Unit 1: Numbers to 1,000

Friendly Notes

Counting Within 1,000

We can group big numbers into hundreds, tens, and ones. This makes counting easy.

1. Count the straws.

<table>
<thead>
<tr>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100, 200, 300, 400, 500, 600, 610, 611, 612, 613, 614

6 hundreds 1 ten 4 ones = 614
600 + 10 + 4 = 614
We put 10 tens together to make a hundred. We put 10 hundreds together to make a thousand.

2. This is a one-hundred-dollar bill.

We can exchange 10 ten-dollar bills for a one-hundred-dollar bill.

Comparing Numbers

When we compare numbers, we work from left to right.

1. Which number is greater?

\[
\begin{array}{c}
\text{H} \\
1 \\
3
\end{array}
\quad
\begin{array}{c}
\text{T} \\
8 \\
0
\end{array}
\quad
\begin{array}{c}
\text{O} \\
9 \\
2
\end{array}
\]

First, compare the hundreds.

3 hundreds is greater than 1 hundred.

302 is greater than 189.

\[302 > 189\]

‘>’ means greater than.
2. Which number is smaller?

First, compare the hundreds. They are the same.

Next, compare the tens. 5 tens is smaller than 8 tens.
So, 255 is smaller than 285.

255 < 285

3. Which number is the smallest? Which number is the greatest?

First, compare the hundreds.
3 hundreds is less than 5 hundreds and 4 hundreds.
So, 311 is the smallest number.

5 hundreds is greater than 4 hundreds and 3 hundreds.
So, 535 is the greatest number.
To make the smallest or greatest possible number from a group of numbers, place the numbers in a chart. Then compare the numbers from left to right.

4. What is the smallest number that can be made using 6, 2, and 8?

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Compare the hundreds.
2 hundreds is smaller than 6 hundreds and 8 hundreds.
So, we look at 286 and 268 only.

Compare the tens.
6 tens is smaller than 8 tens.
So, 268 is the smallest number.

\[
268 = 200 + \underline{60} + 8 \\
286 = 200 + \underline{80} + 6 \\
80 \text{ is greater than } 60. \\
286 \text{ is greater than } 268.
\]
Unit 2 : Addition and Subtraction

Meanings of Addition and Subtraction

We add two parts to find the whole.
We subtract one part from the whole to find the other part.

1. Paul has 6 balls.
 Amanda has 4 balls.
 How many balls are there altogether?

\[
6 + 4 = 10
\]

There are 10 balls altogether.
2. \[8 + 5 = 13\] \[5 + 8 = 13\] \[13 - 5 = 8\] \[13 - 8 = 5\]

3. Maria has 45 books in her room.
 June has 24 books.
 How many books do they have altogether?
 \[45 + 24 = 69\]

 They have 69 books altogether.

 Carlos bought 22 stickers.
 How many stickers did Eric buy?
 \[36 - 22 = 14\]

 Eric bought 14 stickers.
Addition Without Renaming

When we add two numbers, we can write one number on top of the other. Make sure the digits are arranged in the correct columns.

432 + 54 = _____

In the number 54, the digit 5 stands for 5 tens. The digit 4 stands for 4 ones.

This is wrong!

Add the ones.

Add the tens.

Add the hundreds.

432 + 54 = 486
Subtraction Without Renaming

When we subtract one number from another, we always write the greater number on top. Make sure the digits are arranged in the correct columns.

368 – 65 = _______

H T O
3 6 8
- 6 5

This is wrong!

In the number 65, the digit 6 stands for 6 tens. The digit 5 stands for 5 ones.

H T O
3 6 8
- 6 5

This is correct!

Subtract the ones.

\[
\begin{array}{ccc}
H & T & O \\
3 & 6 & 8 \\
- & 6 & 5 \\
\hline
\end{array}
\]

\[3\]

Subtract the tens.

\[
\begin{array}{ccc}
H & T & O \\
3 & 6 & 8 \\
- & 6 & 5 \\
\hline
0 & 3 \\
\end{array}
\]

Subtract the hundreds.

\[
\begin{array}{ccc}
H & T & O \\
3 & 6 & 8 \\
- & 6 & 5 \\
\hline
3 & 0 & 3 \\
\end{array}
\]

368 – 65 = 303
Addition With Renaming

When there are 10 ones or more, change 10 ones for 1 ten. When there are 10 tens or more, change 10 tens for 1 hundred.

Add 156 and 176.

```
156 + 176 = 332
```

Add the ones:
6 ones + 6 ones = 12 ones = 1 ten 2 ones

```
  1 5 6
+ 1 7 6
    2
```

Add the tens:
5 tens + 7 tens + 1 ten = 13 tens = 1 hundred 3 tens

```
  1 5 6
+ 1 7 6
   3 2
```

Add the hundreds:

```
  1 5 6
+ 1 7 6
  3 3 2
```
Subtraction With Renaming

When there are not enough ones to take away from, change 1 ten for 10 ones.

1. Subtract 543 from 731.

We cannot take away 3 ones from 1 one.

Change 1 ten for 10 ones.

\[
\begin{array}{c}
7 & 3 & 1 \\
\hline
5 & 4 & 3 \\
\hline
\end{array}
\]

Subtract the ones.

\[
\begin{array}{c}
7 & 3 & 1 \\
\hline
5 & 4 & 3 \\
\hline
8 \\
\end{array}
\]
When there are not enough tens to take away from, change 1 hundred to 10 tens.

We cannot take away 4 tens from 2 tens.

Change 1 hundred for 10 tens.

Subtract the tens.

\[
\begin{array}{cccc}
6 & 12 & 11 \\
- & 5 & 4 & 3 \\
\hline
8 & 8 & & \\
\end{array}
\]

Subtract the hundreds.

\[
\begin{array}{cccc}
6 & 12 & 11 \\
- & 5 & 4 & 3 \\
\hline
1 & 8 & 8 & \\
\end{array}
\]

\[731 - 543 = 188\]
When there are 0 tens and ones, change 1 hundred for 9 tens and 10 ones.

2. Subtract 186 from 500.

\[
\begin{array}{ccc}
\text{500} & \text{186} & \text{314} \\
\hline
\text{5} & \text{9} & \text{10} \\
\text{1} & \text{3} & \text{6} \\
\hline
\text{4} & \text{9} & \text{10} \\
\end{array}
\]

Subtract the ones.

\[
\begin{array}{ccc}
\text{500} & \text{186} & \text{314} \\
\hline
\text{5} & \text{9} & \text{10} \\
\text{1} & \text{3} & \text{6} \\
\hline
\text{4} & \text{9} & \text{10} \\
\end{array}
\]

Subtract the tens.

\[
\begin{array}{ccc}
\text{500} & \text{186} & \text{314} \\
\hline
\text{5} & \text{9} & \text{10} \\
\text{1} & \text{3} & \text{6} \\
\hline
\text{4} & \text{9} & \text{10} \\
\end{array}
\]

Subtract the hundreds.

\[
\begin{array}{ccc}
\text{500} & \text{186} & \text{314} \\
\hline
\text{5} & \text{9} & \text{10} \\
\text{1} & \text{3} & \text{6} \\
\hline
\text{4} & \text{9} & \text{10} \\
\end{array}
\]

500 – 186 = 314
Unit 3 : Length

Friendly Notes

We can use things like paper clips and footprints to measure length.

Measure the rod.

The rod is about 11 long.

The rod is about 8 long.
We can also measure length in centimeters and inches. We write \textbf{cm} for centimeter and \textbf{in.} for inch. We usually use \textbf{cm} and \textbf{in.} for measuring short lengths.

1 \text{ inch} > 1 \text{ cm}

Measure the pencil.

We usually measure things starting with the mark under ‘0’ on the ruler.

Let’s estimate the length of the pencil and the rod first before we measure them.

The estimate of the length of the pencil is 5 cm.
The estimate of the length of the rod is 12 cm.

The pencil is 5 cm long or about 2 inches long.
The rod is 12 cm long or about 5 inches long.
The meter, feet, and yard are other units for measuring length. They are used for measuring longer lengths. We write \textbf{m} for meter, \textbf{ft} for foot or feet, and \textbf{yd} for yard.

1 yard is a little shorter than 1 meter.

The boy is 1 m tall.

\[
\begin{align*}
1 \text{ meter} &= 100 \text{ centimeters} \\
1 \text{ yard} &= 3 \text{ feet} \\
1 \text{ foot} &= 12 \text{ inches}
\end{align*}
\]
3. The length of a table is 2 yd.
 (a) Is the length more than, less than, or the same as 2 ft?
 (b) Is the length more than, less than, or the same as 2 m?

 (a) 1 yd = 3 ft
 2 yd is more than 3 ft.
 The length is more than 2 ft.

 (b) 1 yd is a little shorter than 1 m.
 2 yd is shorter than 2 m.
 The length is less than 2 m.
Unit 4: Multiplication and Division

Multiplication

We multiply to find the total when equal groups are put together.

There are 5 tomatoes on 1 plate.
There are 3 plates.

3 groups of 5 = 3 fives
= 5 + 5 + 5 = 15

We write the multiplication equation:
3 × 5 = 15

We can also write:
5 × 3 = 15

There are 15 tomatoes altogether.

Friendly Notes

There are 3 groups of 5 tomatoes.
There are 5 tomatoes on each of the 3 plates.
Division

We share equally or put things into equal groups when we divide. We divide to find the number in each equal group.

1. Share 6 bananas equally between 2 monkeys. How many bananas does each monkey get?

![Image of bananas]

We write the division equation:

\[6 \div 2 = 3 \]

Each monkey gets 3 bananas.

We also divide to find the number of equal groups.

2. Divide 10 apples into groups of 5. How many equal groups are there?

![Image of apples]

We write the division equation:

\[10 \div 5 = 2 \]

There are 2 equal groups.
Unit 5: Multiplication Tables of 2 and 3

Friendly Notes

Multiplication Table of 2

We can count by 2’s to help us remember the multiplication table of 2.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>=</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>×</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplication Table of 3

We can count by 3’s to help us remember the multiplication table of 3.

1 × 3 = 3	🍃🍃🍃🍃🍃🍃
2 × 3 = 6	🍃🍃🍃🍃🍃🍃
3 × 3 = 9	🍃🍃🍃🍃🍃🍃
4 × 3 = 12	🍃🍃🍃🍃🍃🍃
5 × 3 = 15	🍃🍃🍃🍃🍃🍃
6 × 3 = 18	🍃🍃🍃🍃🍃🍃
7 × 3 = 21	🍃🍃🍃🍃🍃🍃
8 × 3 = 24	🍃🍃🍃🍃🍃🍃
9 × 3 = 27	🍃🍃🍃🍃🍃🍃
10 × 3 = 30	🍃🍃🍃🍃🍃🍃
Dividing by 2
We can divide by 2 using multiplication facts.

1 × 2 = 2
2 ÷ 2 = 1

2 × 2 = 4
4 ÷ 2 = 2

3 × 2 = 6
6 ÷ 2 = 3

4 × 2 = 8
8 ÷ 2 = 4

5 × 2 = 10
10 ÷ 2 = 5

6 × 2 = 12
12 ÷ 2 = 6

7 × 2 = 14
14 ÷ 2 = 7

8 × 2 = 16
16 ÷ 2 = 8

9 × 2 = 18
18 ÷ 2 = 9

10 × 2 = 20
20 ÷ 2 = 10

Dividing by 3
We can divide by 3 using multiplication facts.

1 × 3 = 3
3 ÷ 3 = 1

2 × 3 = 6
6 ÷ 3 = 2

3 × 3 = 9
9 ÷ 3 = 3

4 × 3 = 12
12 ÷ 3 = 4

5 × 3 = 15
15 ÷ 3 = 5

6 × 3 = 18
18 ÷ 3 = 6

7 × 3 = 21
21 ÷ 3 = 7

8 × 3 = 24
24 ÷ 3 = 8

9 × 3 = 27
27 ÷ 3 = 9

10 × 3 = 30
30 ÷ 3 = 10
Division with Remainder

We get a remainder when we cannot divide a number exactly.

Divide 17 marbles between 2 children.
(a) How many marbles does each child get?
(b) How many marbles are left over?

\[17 \div 2 = 8 \text{ with } 1 \text{ left over} \]

(a) Each child gets 8 marbles.
(b) 1 marble is left over.
Unit 6 : Addition and Subtraction

Friendly Notes

Finding the Missing Number

We add to find the whole.
We subtract to find one part.

1. Find the missing number.

\[
\begin{align*}
7 + 8 &= 15 \\
15 - 8 &= 7 \\
15 - \underline{8} &= 7
\end{align*}
\]

To find one part, we subtract.
15 – 7 = 8
15 – \underline{8} = 7
2. Find the missing number.

\[14 - 9 = 5\]

To find the whole, we add.

\[5 + 9 = 14\]

\[14 - 9 = 5\]

3. Find the missing number.

\[64 + 36 = 100\]

\[100 - 64 = 36\]

Methods for Mental Addition

To add two numbers mentally, we can add the tens first and then add the ones.

1. What number is 56 more than 128?

\[128 + 56 = 184\]

\[128 \quad +50 \quad 178 \quad +6 \quad 184\]

184 is 56 more than 128.
To add a number close to 100 mentally, we can make a 100 first and then add.

2. Add 367 and 98.

\[
367 + 98 = 365 + 100 \\
365 + 2 = 367 \\
98 \text{ and } 2 \text{ make } 100.
\]

\[
367 + 98 = 465
\]

Methods for Mental Subtraction

To subtract mentally, we can subtract the tens and then subtract the ones.

1. Subtract 74 from 587.

\[
587 \quad \overline{-70} \quad 517 \quad \overline{-4} \quad 513
\]

\[
587 - 74 = 513
\]

2. Subtract 81 from 100.

\[
100 \quad \overline{-80} \quad 20 \quad \overline{-1} \quad 19
\]

\[
100 - 81 = 19
\]
To subtract a number close to 100 mentally, we can subtract from 100 first and then add.

2. Subtract 96 from 310.

\[
310 - 96 = 210 + 4
\]

\[
210 \quad 100
\]

Subtract 96 from 100.

\[
310 - 96 = 214
\]
Unit 7: Multiplication and Division

Friendly Notes

Multiplying and Dividing by 4

We can count by 4’s to help us remember the multiplication table of 4.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>24</td>
</tr>
<tr>
<td>24</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>36</td>
</tr>
<tr>
<td>36</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>×</td>
<td>4</td>
<td>=</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>÷</td>
<td>4</td>
<td>=</td>
<td>10</td>
</tr>
</tbody>
</table>
Multiplying and Dividing by 5

We can count by 5’s to help us remember the multiplication table of 5.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \times 5 = 5$</td>
<td>$2 \times 5 = 10$</td>
<td>$3 \times 5 = 15$</td>
</tr>
<tr>
<td>$5 \div 5 = 1$</td>
<td>$10 \div 5 = 2$</td>
<td>$15 \div 5 = 3$</td>
</tr>
<tr>
<td>$6 \times 5 = 30$</td>
<td>$7 \times 5 = 35$</td>
<td>$8 \times 5 = 40$</td>
</tr>
<tr>
<td>$30 \div 5 = 6$</td>
<td>$35 \div 5 = 7$</td>
<td>$40 \div 5 = 8$</td>
</tr>
</tbody>
</table>
Multiplying and Dividing by 10

We can count by 10’s to help us remember the multiplication table of 10.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \times 10 = 10$</td>
<td>$10 \div 10 = 1$</td>
<td></td>
</tr>
<tr>
<td>$2 \times 10 = 20$</td>
<td>$20 \div 10 = 2$</td>
<td></td>
</tr>
<tr>
<td>$3 \times 10 = 30$</td>
<td>$30 \div 10 = 3$</td>
<td></td>
</tr>
<tr>
<td>$4 \times 10 = 40$</td>
<td>$40 \div 10 = 4$</td>
<td></td>
</tr>
<tr>
<td>$5 \times 10 = 50$</td>
<td>$50 \div 10 = 5$</td>
<td></td>
</tr>
<tr>
<td>$6 \times 10 = 60$</td>
<td>$60 \div 10 = 6$</td>
<td></td>
</tr>
<tr>
<td>$7 \times 10 = 70$</td>
<td>$70 \div 10 = 7$</td>
<td></td>
</tr>
<tr>
<td>$8 \times 10 = 80$</td>
<td>$80 \div 10 = 8$</td>
<td></td>
</tr>
<tr>
<td>$9 \times 10 = 90$</td>
<td>$90 \div 10 = 9$</td>
<td></td>
</tr>
<tr>
<td>$10 \times 10 = 100$</td>
<td>$100 \div 10 = 10$</td>
<td></td>
</tr>
</tbody>
</table>
Unit 8: Money

Friendly Notes

Dollars and Cents

When we write money in dollars and cents, the dot (.) separates the cents from the dollars.

We write 6 dollars 20 cents as $6.20.

Write the prices of these items in dollars and cents.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>$15.90</td>
</tr>
<tr>
<td>Backpack</td>
<td>$28.70</td>
</tr>
</tbody>
</table>

$15.90 = 15 dollars 90 cents
Fifteen dollars ninety cents

$28.70 = 28 dollars 70 cents
Twenty-eight dollars seventy cents
Adding Money

When we add money, we add the dollars together and add the cents together.

1. \(\$9.30 + \$6.45 = \$ \) ______
 Add the dollars : \(\$9 + \$6 = \$15 \)
 Add the cents : \(30\text{¢} + 45\text{¢} = 75\text{¢} \)

 Total: \(\$9.30 + \$6.45 = \$15 + 75\text{¢} \)
 \(= \$15.75 \)

 We can also add \(\$9.30 \) and \(\$6.45 \) in this way:
 \[
 \begin{array}{c}
 \$9.30 \\
 + \$6 \\
 \hline
 \$15.30 \\
 + 75\text{¢} \\
 \hline
 \$15.75
 \end{array}
 \]

2. \(\$8.25 + \$1.35 = \$ \) ______
 We can add \(\$8.25 \) and \(\$1.35 \) like this:

 \[
 \begin{array}{c}
 \$8.25 \\
 + \$1.35 \\
 \hline
 \$9.60
 \end{array}
 \]
Subtracting Money

When there are not enough cents to take away from, change $1 into 100 cents.

1. \(\$6.55 - \$2.30 = \$ \) ______
 \[\$6.55 - \$2 \rightarrow \$4.55 - 30\text{¢} \rightarrow \$4.25 \]
 \(\$6.55 - \$2.30 = \$4.25 \)

2. \(\$7.30 - \$4.65 = \$ \) ______

 We cannot take away 65 cents from 30 cents.
 We change $1 into 100 cents.

 \(\$7.30 = \$6 + 130\text{¢} \)
 Subtract the dollars: \(\$6 - \$4 = \$2 \)
 Subtract the cents: \(130\text{¢} - 65\text{¢} = 65\text{¢} \)
 \(\$7.30 - \$4.65 = \$2.65 \)

3. \(\$4.85 - \$2.95 = \$ \) ______
 We can subtract $2.95 from $4.85 like this:
 \[
 \begin{array}{c}
 \$ 4.85 \\
 - \$ 2.95 \\
 \hline
 \$ 1.90
 \end{array}
 \]
He also bought a pair of shorts.
The pair of shorts cost $5.50 less than the wallet.
(a) How much did Jackson pay for the pair of shorts?
(b) How much did he spend altogether?

(a)
$16.35 = 15 + 135¢
$15 – $5 = $10
135 cents – 50¢ = 85¢

$16.35 – $5.50 = $10.85

Jackson paid $10.85 for the pair of shorts.

(b)
$16.35 \quad + 10 \quad $26.35 \quad + 85¢ \quad $27.20

35¢ + 85¢ = 120¢
120¢ = $1 + 20¢

$16.35 + $10.85 = $27.20
He spent $27.20 altogether.
Unit 9 : Fractions

Friendly Notes

Halves, Fourths, and Thirds

When we divide a whole into 2 equal parts, each part is one-half.
When we divide a whole into 4 equal parts, each part is one-quarter.
One-quarter is the same as one-fourth.
When we divide a whole into 3 equal parts, each part is one-third.

The triangle is divided into 2 equal parts.
Each part is a half.
2 halves make 1 whole.

The square is divided into 4 equal parts.
Each part is a fourth.
4 fourths make 1 whole.
The circle is divided into 3 equal parts.
Each part is a third.
3 thirds make 1 whole.

Writing Fractions

1 out of 6 equal parts is shaded.

\[\frac{1}{6} \] of the shape is shaded.

5 out of 6 equal parts is not shaded.

\[\frac{5}{6} \] of the shape is not shaded.

\[\frac{1}{6} \] and \[\frac{5}{6} \] make one whole.
We can use number lines to show fractions.

0 to 1 on a number line represents 1 whole.

The number line is divided into four equal parts.

Each part is $\frac{1}{4}$.

![Number line with fractions](image)

The fraction of each equal part of a whole gets smaller as the number of equal parts in a whole increases.

1. Which is greater, $\frac{1}{2}$ or $\frac{1}{8}$?

$\frac{1}{2}$ is greater.
2. Arrange the fractions in order. Begin with the greatest.

\[
\frac{1}{9}, \quad \frac{1}{6}, \quad \frac{1}{10}
\]

\[
\frac{1}{6}
\]

\[
\frac{1}{9}
\]

\[
\frac{1}{10}
\]

Comparing the size of the shaded parts:

\[
\frac{1}{6}
\]

is the greatest.

\[
\frac{1}{10}
\]

is the smallest.

Arranging the fractions in order beginning with the greatest, we have \(\frac{1}{6}, \frac{1}{9}, \frac{1}{10}\).
Unit 10: Time

Friendly Notes

Telling Time After the Hour

We read 8:20 as eight twenty. It is 20 minutes after 8 o’clock. We can also say it is 20 minutes past 8.

Telling Time Before the Hour

We read 2:45 as two forty-five. It is 15 minutes before 3 o’clock. We can also say it is 15 minutes to 3.
We use A.M. to indicate time before 12 noon.
We use P.M. to indicate time after 12 noon.

It is morning.
Maria wakes up at 6:30 A.M.

It is noon.
Ricky has lunch at 12 P.M.

It is evening.
Jacob has piano lessons at 7:45 P.M.

It is night.
Tricia goes to bed at 9:15 P.M.
Picture Graphs, Bar Graphs, and Line Plots

We can present data using picture graphs, bar graphs, or line plots.
Pictures are used to show data in picture graphs.
Bars are used to show data in bar graphs.

Count each type of flower shown.

Roses Sunflowers Tulips Carnations

We can tally as we count, and write the tally marks in a chart.

<table>
<thead>
<tr>
<th>Flower</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rose</td>
<td>### /</td>
</tr>
<tr>
<td>Sunflower</td>
<td>///</td>
</tr>
<tr>
<td>Tulip</td>
<td>### /</td>
</tr>
<tr>
<td>Carnation</td>
<td>### ###</td>
</tr>
</tbody>
</table>
The picture graph below shows the number of each type of flower.

<table>
<thead>
<tr>
<th></th>
<th>Rose</th>
<th>Sunflower</th>
<th>Tulip</th>
<th>Carnation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each 🌸 stands for 2 flowers.

From the graph we can get the following information.
(a) Each 🌸 stands for 2 flowers.
(b) There are 6 roses.
(c) There are 4 sunflowers.
(d) There are 6 tulips.
(e) There are 10 carnations.
(f) There are 2 fewer sunflowers than roses.
(g) There are 4 more carnations than tulips.
(h) There are as many roses as tulips.
(i) There are 26 flowers altogether.
The bar graphs below show the number of each type of flower.

(a) Vertical bar graph

(b) Horizontal bar graph
The table below shows the number of each type of flower.

<table>
<thead>
<tr>
<th>Flower</th>
<th>Rose</th>
<th>Sunflower</th>
<th>Tulip</th>
<th>Carnation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of flowers</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

We can also use a line plot to record data.

The line plot below shows the number of siblings a group of children have.

From the line plot, we can get the following information.

(a) Most children have 1 sibling.
(b) The least number of children have 4 siblings.
(c) There are a total of 20 children in the survey.
Objects come in different shapes and sizes. They can have flat or curved surfaces.

<table>
<thead>
<tr>
<th>Objects with flat surfaces</th>
<th>Objects with curved surfaces</th>
<th>Objects with flat and curved surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These objects have flat and curved faces too.

This solid has 6 flat faces, 8 vertices, and 12 edges.

This solid has 5 flat faces, 6 vertices, and 9 edges.

This solid has 5 flat faces, 5 vertices, and 8 edges.

This solid has 4 flat faces, 4 vertices, and 6 edges.
This solid has 6 flat faces, 8 vertices and 12 edges.

This solid has 1 curved face and 2 flat faces.

This solid has 1 flat face, 1 curved face, and 1 vertex.

This solid has 1 curved face. It has no vertices and no edges.
Composite Figures

We can put shapes such as squares, triangles, rectangles, and circles together to form other shapes.

We can make the shape below with a triangle and a half circle. The shape is made up of 3 straight lines and a curve.

![Shape made with triangle and half circle]

We can make the shape below using 2 triangles, 2 rectangles, and a square.

![Shape made with 2 triangles, 2 rectangles, and a square]

This is a regular pattern of shapes. What shape comes next?

![Pattern of shapes]

The next shape is ![Next shape].
Some squares are fitted together to form a rectangle.

This rectangle is made up of 20 squares.

This rectangle is made up of 6 squares.

Angles and Shapes

Any two sides joined makes an angle.

A triangle has 3 sides and 3 angles.

A quadrilateral has 4 sides and 4 angles.

A pentagon has 5 sides and 5 angles.
A polygon is a closed figure with straight sides.

- A hexagon has 6 sides and 6 angles.
- An octagon has 8 sides and 8 angles.